This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel \textcolor{black}{graph} transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains. The source code for reproducing the experimental results is available at https://github.com/daiquanyu/AdaGCN.


翻译:本文研究跨网络节点分类问题,以克服单一网络中标签数据不足的问题,目的是利用部分标签源网络中的标签信息,协助完全无标签或部分标签的目标网络中的节点分类。由于网络之间的域变换,单一网络学习的现有方法无法解决这一问题。一些多网络学习方法严重依赖跨网络连接的存在,因此无法适用于这一问题。为了解决这一问题,我们提议采用一个新型的\textcolor{black ⁇ g_graph}传输学习框架AdaGCN, 利用对称域适应和图解变技术。它由两个部分组成:半监督学习部分和对称域调整部分。前者的目的是学习类别中带有源和目标网络的标签信息的类别区分说明,而后者则有助于减少源和目标区域之间的分布差异,以促进知识转移。关于真实世界数据集的广泛经验评估表明,AdaGCN能够成功地传输源网络上低标签率的类信息,而源网络/方图变换的源/目标区域之间则有很大差异。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2021年7月20日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
13+阅读 · 2019年11月14日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员