Embedding real-world networks presents challenges because it is not clear how to identify their latent geometries. Embedding some disassortative networks, such as scale-free networks, to the Euclidean space has been shown to incur distortions. Embedding scale-free networks to hyperbolic spaces offer an exciting alternative but incurs distortions when embedding assortative networks with latent geometries not hyperbolic. We propose an inductive model that leverages both the expressiveness of GCNs and trivial bundle to learn inductive node representations for networks with or without node features. A trivial bundle is a simple case of fiber bundles,a space that is globally a product space of its base space and fiber. The coordinates of base space and those of fiber can be used to express the assortative and disassortative factors in generating edges. Therefore, the model has the ability to learn embeddings that can express those factors. In practice, it reduces errors for link prediction and node classification when compared to the Euclidean and hyperbolic GCNs.
翻译:嵌入真实世界的网络提出了挑战,因为不清楚如何识别其潜在的地理比例。 将一些不支持的网络,如无规模网络,嵌入到欧clidean空间,已经证明会产生扭曲。 将无规模网络嵌入双曲空间,提供了令人兴奋的替代方案,但在嵌入与潜在地理比例而非双曲的图像网络时,则会产生扭曲。 我们提议了一种吸引模型,利用GCN的表达性和微小的捆包,学习有节点特征或没有节点特征的网络的进化节点表征。 一个小捆绑是一个简单的纤维捆绑案例,一个全球范围内是其基础空间和纤维的产物空间。 基空间和纤维的坐标可用于表达生成边缘中的分解和分解因素。 因此,该模型有能力学习能够表达这些因素的嵌入。 实际上,它会减少连接预测和分解分类的误差,如果与 Euclidean 和 双曲线 GCN 比较的话。