Embedding real-world networks presents challenges because it is not clear how to identify their latent geometries. Embedding some disassortative networks, such as scale-free networks, to the Euclidean space has been shown to incur distortions. Embedding scale-free networks to hyperbolic spaces offer an exciting alternative but incurs distortions when embedding assortative networks with latent geometries not hyperbolic. We propose an inductive model that leverages both the expressiveness of GCNs and trivial bundle to learn inductive node representations for networks with or without node features. A trivial bundle is a simple case of fiber bundles,a space that is globally a product space of its base space and fiber. The coordinates of base space and those of fiber can be used to express the assortative and disassortative factors in generating edges. Therefore, the model has the ability to learn embeddings that can express those factors. In practice, it reduces errors for link prediction and node classification when compared to the Euclidean and hyperbolic GCNs.


翻译:嵌入真实世界的网络提出了挑战,因为不清楚如何识别其潜在的地理比例。 将一些不支持的网络,如无规模网络,嵌入到欧clidean空间,已经证明会产生扭曲。 将无规模网络嵌入双曲空间,提供了令人兴奋的替代方案,但在嵌入与潜在地理比例而非双曲的图像网络时,则会产生扭曲。 我们提议了一种吸引模型,利用GCN的表达性和微小的捆包,学习有节点特征或没有节点特征的网络的进化节点表征。 一个小捆绑是一个简单的纤维捆绑案例,一个全球范围内是其基础空间和纤维的产物空间。 基空间和纤维的坐标可用于表达生成边缘中的分解和分解因素。 因此,该模型有能力学习能够表达这些因素的嵌入。 实际上,它会减少连接预测和分解分类的误差,如果与 Euclidean 和 双曲线 GCN 比较的话。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2019年3月26日
Arxiv
9+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员