We present a deep learning-based multi-task approach for head pose estimation in images. We contribute with a network architecture and training strategy that harness the strong dependencies among face pose, alignment and visibility, to produce a top performing model for all three tasks. Our architecture is an encoder-decoder CNN with residual blocks and lateral skip connections. We show that the combination of head pose estimation and landmark-based face alignment significantly improve the performance of the former task. Further, the location of the pose task at the bottleneck layer, at the end of the encoder, and that of tasks depending on spatial information, such as visibility and alignment, in the final decoder layer, also contribute to increase the final performance. In the experiments conducted the proposed model outperforms the state-of-the-art in the face pose and visibility tasks. By including a final landmark regression step it also produces face alignment results on par with the state-of-the-art.


翻译:我们为头部提出了一种基于深层次学习的多任务方法,在图像中进行估计。我们借助一种网络架构和培训战略,利用面部成形、对齐和可见度之间的强大依赖性,为这三项任务制作出一种最优秀的模型。我们的架构是一个带有残余区块和横向跳过连接的编码解码器CNN。我们表明,头部的估算和基于里程碑的面部对齐相结合,大大改善了前一项任务的绩效。此外,在编码器末端的瓶颈层,以及取决于空间信息的任务的位置,如在最后解码层的可见度和对齐,也有助于提高最后的性能。在进行实验时,拟议的模型超越了面部的状态和可见性任务。通过纳入一个最终的里程碑式回归步骤,它还产生与最新技术一样的面部一致结果。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
7+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
7+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员