The implementation of optimization-based motion coordination approaches in real world multi-agent systems remains challenging due to their high computational complexity and potential deadlocks. This paper presents a distributed model predictive control (MPC) approach based on convex feasible set (CFS) algorithm for multi-vehicle motion coordination in autonomous driving. By using CFS to convexify the collision avoidance constraints, collision-free trajectories can be computed in real time. We analyze the potential deadlocks and show that a deadlock can be resolved by changing vehicles' desired speeds. The MPC structure ensures that our algorithm is robust to low-level tracking errors. The proposed distributed method has been tested in multiple challenging multi-vehicle environments, including unstructured road, intersection, crossing, platoon formation, merging, and overtaking scenarios. The numerical results and comparison with other approaches (including a centralized MPC and reciprocal velocity obstacles) show that the proposed method is computationally efficient and robust, and avoids deadlocks.
翻译:在现实世界的多试剂系统中,由于计算复杂程度高,并有可能陷入僵局,实施基于优化的机动协调方法仍具有挑战性,因为其计算复杂程度高,而且有可能陷入僵局。本文件介绍了基于自动驾驶中多车辆运动协调的可操作的组合式多车动作算法的分布式模型预测控制(MPC)方法。通过使用CFS来解析避免碰撞的制约因素,可以实时计算出无碰撞轨道。我们分析了潜在的僵局,并表明可以通过改变车辆的预期速度来打破僵局。MPC结构确保我们的算法对低水平跟踪错误是稳健的。拟议的分配方法已经在多种具有挑战性的多车辆环境中进行了测试,包括无结构的道路、交叉点、交叉点、排组装、合并和超负荷情景。数字结果和与其他方法(包括集中的MPC和相互速度障碍)的比较表明,拟议的方法在计算上是高效和稳健的,并避免了僵局。