This report documents the programme and the outcomes of Dagstuhl Seminar 22382 "Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling". Today's scientific challenges are characterised by complexity. Interconnected natural, technological, and human systems are influenced by forces acting across time- and spatial-scales, resulting in complex interactions and emergent behaviours. Understanding these phenomena -- and leveraging scientific advances to deliver innovative solutions to improve society's health, wealth, and well-being -- requires new ways of analysing complex systems. The transformative potential of AI stems from its widespread applicability across disciplines, and will only be achieved through integration across research domains. AI for science is a rendezvous point. It brings together expertise from $\mathrm{AI}$ and application domains; combines modelling knowledge with engineering know-how; and relies on collaboration across disciplines and between humans and machines. Alongside technical advances, the next wave of progress in the field will come from building a community of machine learning researchers, domain experts, citizen scientists, and engineers working together to design and deploy effective AI tools. This report summarises the discussions from the seminar and provides a roadmap to suggest how different communities can collaborate to deliver a new wave of progress in AI and its application for scientific discovery.
翻译:本报告记录了Dagstuhl 22382“海洋科学学习:数据驱动和机械模型的衔接”研讨会的方案和成果,22382“海洋科学学习:数据驱动和机械模型的建立”今天的科学挑战具有复杂的特点。相互关联的自然、技术和人类系统受到跨越时间和空间尺度的力量的影响,导致复杂的相互作用和突发行为。理解这些现象,利用科学进步提供创新解决办法以改善社会的健康、财富和福祉,需要以新的方式分析复杂的系统。AI的变革潜力来自其广泛的跨学科适用性,并且只能通过跨研究领域的整合来实现。AI是一个交汇点。它汇集了来自$\mathrm{AI}和应用领域的专业知识;将建模知识与工程知识相结合;依靠跨学科合作以及人类和机器之间的协作。除了技术进步之外,该领域的下一个进步浪潮将来自于建立一个机器学习研究人员、领域专家、公民科学家和工程师社区,共同设计和部署有效的AI工具。本报告总结了研讨会的讨论结果,并提供了一份路线图,以提出不同社区如何合作,以创新的方式应用AI探索。</s>