For the multivariate linear regression model with unknown covariance, the corrected Akaike information criterion is the minimum variance unbiased estimator of the expected Kullback--Leibler discrepancy. In this study, based on the loss estimation framework, we show its inadmissibility as an estimator of the Kullback--Leibler discrepancy itself, instead of the expected Kullback--Leibler discrepancy. We provide improved estimators of the Kullback--Leibler discrepancy that work well in reduced-rank situations and examine their performance numerically.
翻译:对于多变量线性回归模型和未知的共差,经更正的Akaike信息标准是预期Kullback-Leebler差异的最小差异无偏差估计值。在本研究中,根据损失估算框架,我们表明它不能被接受为Kullback-Libel差异本身的估算值,而不是预期的Kullback-Libel差异。我们为Kullback-Leebler差异提供了更好的估算值,这些差异在降级情况下效果良好,并用数字审查其性能。