This paper proposes a paradigm shift for affective computing by viewing the affect modeling task as a reinforcement learning process. According to our proposed framework the context (environment) and the actions of an agent define the common representation that interweaves behavior and affect. To realise this framework we build on recent advances in reinforcement learning and use a modified version of the Go-Explore algorithm which has showcased supreme performance in hard exploration tasks. In this initial study, we test our framework in an arcade game by training Go-Explore agents to both play optimally and attempt to mimic human demonstrations of arousal. We vary the degree of importance between optimal play and arousal imitation and create agents that can effectively display a palette of affect and behavioral patterns. Our Go-Explore implementation not only introduces a new paradigm for affect modeling; it empowers believable AI-based game testing by providing agents that can blend and express a multitude of behavioral and affective patterns.
翻译:本文建议通过将影响模拟任务视为强化学习过程来改变感官计算的模式。 根据我们提议的框架,环境(环境)和代理人的行动定义了相互交织的行为和影响的共同代表。为了实现这一框架,我们以最近加强学习的进展为基础,并使用经修改的Go-Explore算法,该算法展示了艰苦探索任务的最高性能。在最初的研究中,我们通过训练Go-Explore代理商最佳地发挥和试图模仿人类的发声演示来测试我们的框架。我们在最佳玩耍和振奋性模仿以及创造能够有效展示影响和行为模式的代理商之间的重要性不同。我们的Go-Explore实施不仅引入了影响建模的新模式;它通过提供能够混合和表达多种行为和动性模式的代理商来增强可信赖的AI型游戏测试能力。