Multi-agent behavior modeling aims to understand the interactions that occur between agents. We present a multi-agent dataset from behavioral neuroscience, the Caltech Mouse Social Interactions (CalMS21) Dataset. Our dataset consists of trajectory data of social interactions, recorded from videos of freely behaving mice in a standard resident-intruder assay. To help accelerate behavioral studies, the CalMS21 dataset provides benchmarks to evaluate the performance of automated behavior classification methods in three settings: (1) for training on large behavioral datasets all annotated by a single annotator, (2) for style transfer to learn inter-annotator differences in behavior definitions, and (3) for learning of new behaviors of interest given limited training data. The dataset consists of 6 million frames of unlabeled tracked poses of interacting mice, as well as over 1 million frames with tracked poses and corresponding frame-level behavior annotations. The challenge of our dataset is to be able to classify behaviors accurately using both labeled and unlabeled tracking data, as well as being able to generalize to new settings.
翻译:多试剂行为模型旨在了解代理商之间的相互作用。 我们展示了行为神经科学、 Caltech 鼠社会互动( CalMS21) 数据集的多试剂数据集。 我们的数据集包含社会互动的轨迹数据, 记录在标准常住入侵者实验中自由行走的小鼠的视频中。 为了帮助加速行为研究, CalMS21 数据集提供了基准,用于评估三个环境中自动行为分类方法的性能:(1) 由单一标识员加注的大型行为数据集培训,(2) 风格转换以学习行为定义方面的跨咨询员差异,(3) 在有限的培训数据条件下学习新的感兴趣行为。 数据集由600万个未贴标签的跟踪小鼠构成组成, 以及100多万个带有跟踪姿势和相应框架级行为说明的框架组成。 我们数据集面临的挑战是能够使用标签和无标签跟踪数据对行为进行准确分类, 以及能够向新的环境进行概括。