In recent decades, the automatic video surveillance system has gained significant importance in computer vision community. The crucial objective of surveillance is monitoring and security in public places. In the traditional Local Binary Pattern, the feature description is somehow inaccurate, and the feature size is large enough. Therefore, to overcome these shortcomings, our research proposed a detection algorithm for a human with or without carrying baggage. The Local tri-directional pattern descriptor is exhibited to extract features of different human body parts including head, trunk, and limbs. Then with the help of support vector machine, extracted features are trained and evaluated. Experimental results on INRIA and MSMT17 V1 datasets show that LtriDP outperforms several state-of-the-art feature descriptors and validate its effectiveness.


翻译:近几十年来,自动视频监视系统在计算机视觉界已变得非常重要。监控的关键目标是在公共场所进行监测和安全。在传统的本地二进制模式中,特征描述在某种程度上是不准确的,特征大小也足够大。因此,为了克服这些缺陷,我们的研究为携带或不带行李的人提出了检测算法。地方三向模式描述符展示了包括头部、中继和肢体在内的人体不同器官的特征。然后,在辅助矢量机的帮助下,对提取的特征进行了培训和评估。INRIA和MSMT17 V1数据集的实验结果表明,LtriDP超越了几个最先进的特征描述符,并证实了其有效性。

0
下载
关闭预览

相关内容

3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Arxiv
5+阅读 · 2019年2月28日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员