Real world applications such as economics and policy making often involve solving multi-agent games with two unique features: (1) The agents are inherently asymmetric and partitioned into leaders and followers; (2) The agents have different reward functions, thus the game is general-sum. The majority of existing results in this field focuses on either symmetric solution concepts (e.g. Nash equilibrium) or zero-sum games. It remains open how to learn the Stackelberg equilibrium -- an asymmetric analog of the Nash equilibrium -- in general-sum games efficiently from noisy samples. This paper initiates the theoretical study of sample-efficient learning of the Stackelberg equilibrium, in the bandit feedback setting where we only observe noisy samples of the reward. We consider three representative two-player general-sum games: bandit games, bandit-reinforcement learning (bandit-RL) games, and linear bandit games. In all these games, we identify a fundamental gap between the exact value of the Stackelberg equilibrium and its estimated version using finitely many noisy samples, which can not be closed information-theoretically regardless of the algorithm. We then establish sharp positive results on sample-efficient learning of Stackelberg equilibrium with value optimal up to the gap identified above, with matching lower bounds in the dependency on the gap, error tolerance, and the size of the action spaces. Overall, our results unveil unique challenges in learning Stackelberg equilibria under noisy bandit feedback, which we hope could shed light on future research on this topic.


翻译:经济学和政策制定等现实世界应用往往涉及解决具有两个独特特点的多试剂游戏,如经济学和政策制定等: (1) 代理人本质上是不对称的,分成领导者和追随者; (2) 代理人有不同的奖励功能,因此游戏是一般和。 本领域现有的多数结果侧重于对称解决方案概念(如纳什均衡)或零和游戏。 它仍然开放,如何学习斯塔克勒贝格平衡 -- -- 与纳什平衡的不对称类比 -- -- 普通游戏中,从吵闹的样本中有效学习纳什平衡。 本文在强盗反馈环境中,开始理论研究Stackelberg平衡的抽样效率学习,我们只观察悬浮的奖励样本。 我们考虑三种有代表性的双人总和游戏: 匪帮游戏、 土匪拉特加拉特- 硬带学习( 黑带- RL) 游戏和 线形强盗版游戏。 在所有这些游戏中,我们发现斯塔克克尔堡平衡的准确价值与其估计版本之间的根本差距。 本文用很多的杂度样本, 我们无法关闭信息- ―― ―― ――不管是什么算。

0
下载
关闭预览

相关内容

【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
199+阅读 · 2019年9月30日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员