We initiate the study of statistical inference and A/B testing for first-price pacing equilibria (FPPE). The FPPE model captures the dynamics resulting from large-scale first-price auction markets where buyers use pacing-based budget management. Such markets arise in the context of internet advertising, where budgets are prevalent. We propose a statistical framework for the FPPE model, in which a limit FPPE with a continuum of items models the long-run steady-state behavior of the auction platform, and an observable FPPE consisting of a finite number of items provides the data to estimate primitives of the limit FPPE, such as revenue, Nash social welfare (a fair metric of efficiency), and other parameters of interest. We develop central limit theorems and asymptotically valid confidence intervals. Furthermore, we establish the asymptotic local minimax optimality of our estimators. We then show that the theory can be used for conducting statistically valid A/B testing on auction platforms. Numerical simulations verify our central limit theorems, and empirical coverage rates for our confidence intervals agree with our theory.
翻译:我们开始对第一价格速度平衡进行统计推断和A/B测试(FPPE)的研究。FPPE模型捕捉了买方使用以速度为基础的预算管理的大规模第一价格拍卖市场产生的动态。这种市场出现在普遍预算的互联网广告中。我们提议了一个FPPE模型的统计框架,其中对FPPE进行限量,以一系列项目模型作为拍卖平台的长期稳定状态行为,对FPPE进行限制,由有限数量的项目构成的可观测FPPE提供数据,用以估计FPPE限量的原始物,如收入、Nash社会福利(效率的公平衡量标准)和其他利益参数。我们制定中央限制标语,并尽可能有效地设定信任间隔。此外,我们建立了我们估算器的局部无症状最优化性。然后我们表明,该理论可用于在拍卖平台上进行具有统计效力的A/B测试。数字模拟核查我们的中央限值,以及我们信任间隔的经验覆盖率与我们的理论一致。