We propose a semantic similarity metric for image registration. Existing metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning intensity values, giving difficulties with low intensity contrast or noise. Our approach learns dataset-specific features that drive the optimization of a learning-based registration model. We train both an unsupervised approach using an auto-encoder, and a semi-supervised approach using supplemental segmentation data to extract semantic features for image registration. Comparing to existing methods across multiple image modalities and applications, we achieve consistently high registration accuracy. A learned invariance to noise gives smoother transformations on low-quality images.
翻译:我们为图像登记建议了一个语义相似的度量标准。 现有的指标,如欧几里得距离或标准化交叉校正,侧重于调和强度值,给低强度对比或噪音带来困难。 我们的方法学习了驱动优化学习型注册模式的数据集特有特征。 我们用自动编码器来培训一种不受监督的方法,用补充分解数据来提取图像注册的语义特征的半监督方法。 比较了多种图像模式和应用程序的现有方法,我们实现了一贯的高登记准确性。 了解噪音的偏差使得低质量图像的转换更加平滑。