The convergence of variable-step L1 scheme is studied for the time-fractional molecular beam epitaxy (MBE) model with slope selection.A novel asymptotically compatible $L^2$ norm error estimate of the variable-step L1 scheme is established under a convergence-solvability-stability (CSS)-consistent time-step constraint. The CSS-consistent condition means that the maximum step-size limit required for convergence is of the same order to that for solvability and stability (in certain norms) as the small interface parameter $\epsilon\rightarrow 0^+$. To the best of our knowledge, it is the first time to establish such error estimate for nonlinear subdiffusion problems. The asymptotically compatible convergence means that the error estimate is compatible with that of backward Euler scheme for the classical MBE model as the fractional order $\alpha\rightarrow 1^-$. Just as the backward Euler scheme can maintain the physical properties of the MBE equation, the variable-step L1 scheme can also preserve the corresponding properties of the time-fractional MBE model, including the volume conservation, variational energy dissipation law and $L^2$ norm boundedness. Numerical experiments are presented to support our theoretical results.
翻译:为使用斜坡选择的时间偏差分子波束缩进税(MBE)模型研究可变步式L1办法的趋同性 L1 办法的趋同性,这是对可变步式L1 办法的零误估值进行新颖的、与L2美元标准差值兼容的常规估计,是在一个趋同性-可溶性稳定(CSS)一致的时间步调限制下确定的。CSS 兼容性条件意味着,趋同所需的最大步数限制与(在某些规范中)与小界面参数 $\epsilon\rightrow 0. 0. $是相同的。据我们所知,这是第一次为非线性子子子增殖问题确定此类误估值。 无序兼容性趋同性趋同性趋同性趋同性MBE 方程式(在某些规范中), 落后的Eulerf 方案可以维持MBE 方程式的物理特性,可变式L1 方案也可以维持我们非线性次子增增量法性实验。