Building efficient, accurate and generalizable reduced order models of developed turbulence remains a major challenge. This manuscript approaches this problem by developing a hierarchy of parameterized reduced Lagrangian models for turbulent flows, and investigates the effects of enforcing physical structure through Smoothed Particle Hydrodynamics (SPH) versus relying on neural networks (NN)s as universal function approximators. Starting from Neural Network (NN) parameterizations of a Lagrangian acceleration operator, this hierarchy of models gradually incorporates a weakly compressible and parameterized SPH framework, which enforces physical symmetries, such as Galilean, rotational and translational invariances. Within this hierarchy, two new parameterized smoothing kernels are developed in order to increase the flexibility of the learn-able SPH simulators. For each model we experiment with different loss functions which are minimized using gradient based optimization, where efficient computations of gradients are obtained by using Automatic Differentiation (AD) and Sensitivity Analysis (SA). Each model within the hierarchy is trained on two data sets associated with weekly compressible Homogeneous Isotropic Turbulence (HIT): (1) a validation set using weakly compressible SPH; and (2) a high fidelity set from Direct Numerical Simulations (DNS). Numerical evidence shows that encoding more SPH structure improves generalizability to different turbulent Mach numbers and time shifts, and that including the novel parameterized smoothing kernels improves the accuracy of SPH at the resolved scales.
翻译:本文通过开发一系列参数化的约化Lagrangian模型探究通过应用平滑粒子流体力学(SPH)等物理结构和神经网络(NN)等通用函数近似器的影响,构建高效、准确、具有普适性的规模化涡流模型。从Lagrangian加速运算符的神经网络参数化开始,这个层次结构的模型逐渐包括一个弱可压缩且参数化的SPH框架,其能够强制执行物理对称性,如伽利略对称性、旋转对称性和平移对称性。在这个层次结构内,为了增加可学习SPH模拟器的灵活性,还开发出了两种新的参数化平滑核。我们为层次结构中的每个模型尝试了不同的损失函数,并使用梯度优化进行最小化,其中梯度的高效计算采用了自动微分(AD)和灵敏度分析(SA)的方法。在层次结构中,每个模型分别根据两个周产生的可压弱SAM和直接数值模拟(DNS)数据集进行训练。数据证明, 所有SPH模型的实现对不同的湍流Mach数和不同时间偏移都具有一定的普适性,并且引入了新的参数化平滑核后,SPH模型在满足分辨尺度的情况下,其准确性有所提高。