Building efficient, accurate and generalizable reduced order models of developed turbulence remains a major challenge. This manuscript approaches this problem by developing a hierarchy of parameterized reduced Lagrangian models for turbulent flows, and investigates the effects of enforcing physical structure through Smoothed Particle Hydrodynamics (SPH) versus relying on neural networks (NN)s as universal function approximators. Starting from Neural Network (NN) parameterizations of a Lagrangian acceleration operator, this hierarchy of models gradually incorporates a weakly compressible and parameterized SPH framework, which enforces physical symmetries, such as Galilean, rotational and translational invariances. Within this hierarchy, two new parameterized smoothing kernels are developed in order to increase the flexibility of the learn-able SPH simulators. For each model we experiment with different loss functions which are minimized using gradient based optimization, where efficient computations of gradients are obtained by using Automatic Differentiation (AD) and Sensitivity Analysis (SA). Each model within the hierarchy is trained on two data sets associated with weekly compressible Homogeneous Isotropic Turbulence (HIT): (1) a validation set using weakly compressible SPH; and (2) a high fidelity set from Direct Numerical Simulations (DNS). Numerical evidence shows that encoding more SPH structure improves generalizability to different turbulent Mach numbers and time shifts, and that including the novel parameterized smoothing kernels improves the accuracy of SPH at the resolved scales.


翻译:本文通过开发一系列参数化的约化Lagrangian模型探究通过应用平滑粒子流体力学(SPH)等物理结构和神经网络(NN)等通用函数近似器的影响,构建高效、准确、具有普适性的规模化涡流模型。从Lagrangian加速运算符的神经网络参数化开始,这个层次结构的模型逐渐包括一个弱可压缩且参数化的SPH框架,其能够强制执行物理对称性,如伽利略对称性、旋转对称性和平移对称性。在这个层次结构内,为了增加可学习SPH模拟器的灵活性,还开发出了两种新的参数化平滑核。我们为层次结构中的每个模型尝试了不同的损失函数,并使用梯度优化进行最小化,其中梯度的高效计算采用了自动微分(AD)和灵敏度分析(SA)的方法。在层次结构中,每个模型分别根据两个周产生的可压弱SAM和直接数值模拟(DNS)数据集进行训练。数据证明, 所有SPH模型的实现对不同的湍流Mach数和不同时间偏移都具有一定的普适性,并且引入了新的参数化平滑核后,SPH模型在满足分辨尺度的情况下,其准确性有所提高。

0
下载
关闭预览

相关内容

【Nature machine intelligence】闭型连续时间神经网络
专知会员服务
29+阅读 · 2022年11月17日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员