The paper is devoted to an approach to solving a problem of the efficiency of parallel computing. The theoretical basis of this approach is the concept of a $Q$-determinant. Any numerical algorithm has a $Q$-determinant. The $Q$-determinant of the algorithm has clear structure and is convenient for implementation. The $Q$-determinant consists of $Q$-terms. Their number is equal to the number of output data items. Each $Q$-term describes all possible ways to compute one of the output data items based on the input data. We also describe a software $Q$-system for studying the parallelism resource of numerical algorithms. This system enables to compute and compare the parallelism resources of numerical algorithms. The application of the $Q$-system is shown on the example of numerical algorithms with different structures of $Q$-determinants. Furthermore, we suggest a method for designing of parallel programs for numerical algorithms. This method is based on a representation of a numerical algorithm in the form of a $Q$-determinant. As a result, we can obtain the program using the parallelism resource of the algorithm completely. Such programs are called $Q$-effective. The results of this research can be applied to increase the implementation efficiency of numerical algorithms, methods, as well as algorithmic problems on parallel computing systems.
翻译:该文件致力于解决平行计算效率问题的方法。 这种方法的理论基础是“ Q$- 确定性” 的概念。 任何数字算法都有“ Q” 的确定性。 美元算法的结构明确,便于执行。 $- 确定性由“ Q” 组成。 其数量与产出数据项目的数量相等。 每个 Q美元- 期限都描述了根据输入数据计算一个产出数据项目的所有可能方法。 我们还描述了用于研究数字算法平行资源的软件 $- Q 系统。 任何数字算法都有“ Q” 的确定性。 任何数字算法都能够计算和比较数字算法的平行资源。 $- 确定性系统的应用以数字算法为例, 以“ Q” 为例。 以“ Q” 表示数字算法为形式的数字算出一个数字算法。 作为结果,我们可以用“ Q " 美元- 确定性” 算法, 以“ ” 数字算法” 的方法作为数字算法的应用结果, 我们可以用“ 数字算法” 的方法来获得这种“ 。 数字算法” 的平行算法。 。 以“ 以“ 算法” 以“ 效率” 的算法” 以“ 的算算法” 。 以“ 的算法” 的算法” 的算算算法” 。