We revisit the finite Abelian hidden subgroup problem (AHSP) from a mathematical perspective and make the following contributions. First, by employing amplitude amplification, we present an exact quantum algorithm for the finite AHSP, our algorithm is more concise than the previous exact algorithm and applies to any finite Abelian group. Second, utilizing the Chinese Remainder Theorem, we propose a distributed exact quantum algorithm for finite AHSP, which requires fewer qudits, lower quantum query complexity, and no quantum communication. We further show that our distributed approach can be extended to certain classes of non-Abelian groups. Finally, we develop a parallel exact classical algorithm for finite AHSP with reduced query complexity; even without parallel execution, the total number of queries across all nodes does not exceed that of the original centralized algorithm under mild conditions.


翻译:我们从数学角度重新审视有限阿贝尔隐藏子群问题(AHSP),并作出以下贡献。首先,通过采用振幅放大技术,我们提出了一种针对有限AHSP的精确量子算法;该算法较先前的精确算法更为简洁,且适用于任意有限阿贝尔群。其次,利用中国剩余定理,我们提出了一种有限AHSP的分布式精确量子算法,该算法需要更少的量子比特、更低的量子查询复杂度,且无需量子通信。我们进一步证明该分布式方法可推广至特定类型的非阿贝尔群。最后,我们开发了一种具有更低查询复杂度的有限AHSP并行精确经典算法;即使在非并行执行条件下,所有节点上的总查询次数在温和条件下也不会超过原始集中式算法。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员