We study covering problems in Hamming and Grassmann spaces through a unified coding-theoretic and information-theoretic framework. Viewing covering as a form of quantization in general metric spaces, we introduce the notion of the average covering radius as a natural measure of average distortion, complementing the classical worst-case covering radius. By leveraging tools from one-shot rate-distortion theory, we derive explicit non-asymptotic random-coding bounds on the average covering radius in both spaces, which serve as fundamental performance benchmarks. On the construction side, we develop efficient puncturing-based covering algorithms for generalized Reed--Solomon (GRS) codes in the Hamming space and extend them to a new family of subspace codes, termed character-Reed--Solomon (CRS) codes, for Grassmannian quantization under the chordal distance. Our results reveal that, despite poor worst-case covering guarantees, these structured codes exhibit strong average covering performance. In particular, numerical results in the Hamming space demonstrate that RS-based constructions often outperform random codebooks in terms of average covering radius. In the one-dimensional Grassmann space, we numerically show that CRS codes over prime fields asymptotically achieve average covering radii within a constant factor of the random-coding bound in the high-rate regime. Together, these results provide new insights into the role of algebraic structure in covering problems and high-dimensional quantization.


翻译:我们通过统一的编码理论与信息论框架研究汉明空间和格拉斯曼空间中的覆盖问题。将覆盖视为一般度量空间中的一种量化形式,我们引入了平均覆盖半径的概念,作为对经典最坏情况覆盖半径的补充,成为一种自然的平均失真度量。借助单次率失真理论的工具,我们推导了这两个空间中平均覆盖半径的显式非渐近随机编码界,这些界构成了基本的性能基准。在构造方面,我们为汉明空间中的广义里德-所罗门码开发了高效的基于删余的覆盖算法,并将其扩展至一类新的子空间码——称为特征-里德-所罗门码——用于弦距离下的格拉斯曼量化。我们的结果表明,尽管这些结构化码在最坏情况覆盖保证上表现不佳,但在平均覆盖性能上展现出强大优势。具体而言,汉明空间中的数值结果表明,基于RS的构造在平均覆盖半径方面常常优于随机码本。在一维格拉斯曼空间中,我们通过数值模拟证明,在素数域上的CRS码在高码率区域能够渐近地达到与随机编码界相差常数因子的平均覆盖半径。这些结果共同为覆盖问题和高维量化中代数结构的作用提供了新的见解。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月29日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员