Computing accessible information for an ensemble of quantum states is a basic problem in quantum information theory. We show that the optimality criterion recently obtained in [7], when applied to specific ensembles of states, leads to nontrivial tight lower bounds for the Shannon entropy that are discrete relatives of the famous log-Sobolev inequality. In this light, the hypothesis of globally information-optimal measurement for an ensemble of equiangular equiprobable states (quantum pyramids) put forward and numerically substantiated in [2] is reconsidered and the corresponding tight entropy inequalities are proposed. Via the optimality criterion, this suggests also a proof of the conjecture concerning globally information-optimal observables for quantum pyramids put forward in [2].
翻译:计算量子态系综的可访问信息是量子信息论中的一个基本问题。我们证明,最近在文献[7]中获得的优化准则,当应用于特定量子态系综时,会导出香农熵的非平凡紧致下界,这些下界是著名对数索博列夫不等式的离散形式。由此出发,我们重新审视了文献[2]中提出并通过数值验证的关于等角等概率量子态系综(量子金字塔)的全局信息最优测量假设,并提出了相应的紧致熵不等式。通过该优化准则,这也为文献[2]中提出的关于量子金字塔全局信息最优可观测量的猜想提供了一个可能的证明路径。