Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT.


翻译:数字双机制(DT)是指数字和准确代表实际物理实体的很有希望的技术,DT的一个典型优势是,DT不仅可以实际复制一个系统的详细操作,还可以用来分析目前的状况,预测未来的行为,并改进控制优化。虽然DT在智能制造和运输等各个领域得到了广泛实施,但其常规模式仅限于包含非生物实体,例如机器人和车辆。因此,在以人为中心的系统中采用了一个新概念,即所谓的人的数字双机制(HDT),这一概念就是一个新概念。特别是,HDT不仅能够使单个的人类机构具有硅度的代表性,能够动态地反映分子状况、生理状况、情感和心理状况以及生活方式的演变。尽管DTD在个人化保健(PH)领域得到了广泛应用,但传统的模式仅限于包含远程监测、诊断、处方、手术和车辆等非生物实体。但是,HDT在以人为中心的通信架构和关键技术(包括PHHDT)应用程序的网络化结构的网络化结构中,我们以网络化结构的网络化结构和关键技术为焦点,我们首先分析数据结构下的数据结构,然后分析数据结构的分类和数据结构的分类,然后分析数据结构中的数据结构中的数据结构中的数据差异。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
28+阅读 · 2022年1月13日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员