Bilinear dynamical systems are ubiquitous in many different domains and they can also be used to approximate more general control-affine systems. This motivates the problem of learning bilinear systems from a single trajectory of the system's states and inputs. Under a mild marginal mean-square stability assumption, we identify how much data is needed to estimate the unknown bilinear system up to a desired accuracy with high probability. Our sample complexity and statistical error rates are optimal in terms of the trajectory length, the dimensionality of the system and the input size. Our proof technique relies on an application of martingale small-ball condition. This enables us to correctly capture the properties of the problem, specifically our error rates do not deteriorate with increasing instability. Finally, we show that numerical experiments are well-aligned with our theoretical results.
翻译:双线动态系统在许多不同领域无处不在,也可以用来比较一般的控制室系统。这促使人们从系统状态和投入的单一轨迹中学习双线系统的问题。在一个轻微的中位稳定假设下,我们确定需要多少数据来估计未知的双线系统,使其达到预期的精度,且概率高。我们抽样的复杂性和统计误差率在轨距长度、系统维度和输入大小方面是最佳的。我们的证据技术依赖于马丁格尔小球状态的应用。这使我们能够正确地捕捉到问题的特性,特别是我们的误差率不会随着不稳定的加剧而恶化。最后,我们表明数字实验与我们的理论结果完全吻合。