In this paper, we propose the first self-distillation framework for general object detection, termed LGD (Label-Guided self-Distillation). Previous studies rely on a strong pretrained teacher to provide instructive knowledge that could be unavailable in real-world scenarios. Instead, we generate an instructive knowledge based only on student representations and regular labels. Our framework includes sparse label-appearance encoder, inter-object relation adapter and intra-object knowledge mapper that jointly form an implicit teacher at training phase, dynamically dependent on labels and evolving student representations. They are trained end-to-end with detector and discarded in inference. Experimentally, LGD obtains decent results on various detectors, datasets, and extensive tasks like instance segmentation. For example in MS-COCO dataset, LGD improves RetinaNet with ResNet-50 under 2x single-scale training from 36.2% to 39.0% mAP (+ 2.8%). It boosts much stronger detectors like FCOS with ResNeXt-101 DCN v2 under 2x multi-scale training from 46.1% to 47.9% (+ 1.8%). Compared with a classical teacher-based method FGFI, LGD not only performs better without requiring pretrained teacher but also reduces 51% training cost beyond inherent student learning. Codes are available at https://github.com/megvii-research/LGD.


翻译:在本文中,我们提出首个普通物体探测自我蒸馏框架,称为LGD(Label-Guided自我蒸馏)。以前的研究依赖于一个训练有素的教师,以提供在现实世界情景中可能无法获得的启发性知识。相反,我们产生一个仅以学生陈述和常规标签为基础的启发性知识。我们的框架包括:在培训阶段共同形成隐含教师、动态地依赖标签和进化学生代表的自我蒸馏框架(LGD)。他们接受过检测师培训的端对端,并在推断中被抛弃。实验性地,LGD在各种探测器、数据集和诸如实例分割等广泛任务上获得了体面的成果。例如,在MS-CO数据集中,LGDGD将RetinaNet从36.2%到39.0% mAP(+ 2.8%)的单一规模培训改进了ResNet-50,使GDS和Res NeXt-101 DCN v2在2x级的多级培训中得到了更多的检测。在46.1%到47.9%的常规师培训中提高了学习成本。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
12+阅读 · 2019年4月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关论文
Arxiv
0+阅读 · 2022年6月8日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
12+阅读 · 2019年4月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员