Features play a crucial role in computer vision. Initially designed to detect salient elements by means of handcrafted algorithms, features are now often learned by different layers in Convolutional Neural Networks (CNNs). This paper develops a generic computer vision system based on features extracted from trained CNNs. Multiple learned features are combined into a single structure to work on different image classification tasks. The proposed system was experimentally derived by testing several approaches for extracting features from the inner layers of CNNs and using them as inputs to SVMs that are then combined by sum rule. Dimensionality reduction techniques are used to reduce the high dimensionality of inner layers. The resulting vision system is shown to significantly boost the performance of standard CNNs across a large and diverse collection of image data sets. An ensemble of different topologies using the same approach obtains state-of-the-art results on a virus data set.


翻译:计算机视野中的特征具有关键作用。最初设计这些特征的目的是通过手动算法来探测突出元素,现在这些特征往往由进化神经网络的不同层次学习。本文根据经过培训的CNN的特征开发了一个通用的计算机视觉系统。多种学习的特征被合并成一个单一的结构,用于不同的图像分类任务。拟议的系统是实验性的,通过测试从CNN内部层提取特征的几种方法并把它们用作SVM的投入,然后通过总则加以结合。多维度减少技术被用于减少内部层的高维度。由此产生的视觉系统显示,在大规模和多样化的图像数据集中大大提升标准CNN的性能。使用同一方法的不同形态的组合在病毒数据集中获得了最新的结果。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
零基础学SVM—Support Vector Machine系列之一
AI研习社
7+阅读 · 2017年11月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
18+阅读 · 2019年1月16日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
零基础学SVM—Support Vector Machine系列之一
AI研习社
7+阅读 · 2017年11月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员