Along with the desire to address more complex problems, feature selection methods have gained in importance. Feature selection methods can be classified into wrapper method, filter method, and embedded method. Being a powerful embedded feature selection method, Lasso has attracted the attention of many researchers. However, as a linear approach, the applicability of Lasso has been limited. In this work, we propose LassoLayer that is one-to-one connected and trained by L1 optimization, which work to drop out unnecessary units for prediction. For nonlinear feature selections, we build LassoMLP: the network equipped with LassoLayer as its first layer. Because we can insert LassoLayer in any network structure, it can harness the strength of neural network suitable for tasks where feature selection is needed. We evaluate LassoMLP in feature selection with regression and classification tasks. LassoMLP receives features including considerable numbers of noisy factors that is harmful for overfitting. In the experiments using MNIST dataset, we confirm that LassoMLP outperforms the state-of-the-art method.


翻译:随着解决更复杂问题的愿望,地物选择方法也变得更加重要。 地物选择方法可以分为包装法、过滤法和嵌入法。 作为强大的嵌入地物选择方法,Lasso已经吸引了许多研究人员的注意。 但是,作为线性方法,Lasso的适用性受到限制。 在这项工作中,我们建议L1优化的一对一连接和训练的LassoLayer能够退出不必要的预测单位。对于非线性地物选择,我们建立LassoMLP:装有LassoLayer作为第一层的网络。由于我们可以在任何网络结构中插入LassoLayer,它能够利用适合于需要地物选择的任务的神经网络的力量。我们用回归和分类任务来评价LassoMLP。LassoMLP接收了包括大量噪音因素的特征,这些特征对过度适应有害。在使用MNIST数据集的实验中,我们确认LassoMLP超越了最先进的方法。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
自然语言处理现代方法,176页pdf
专知会员服务
267+阅读 · 2021年2月22日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员