We develop an Explore-Exploit Markov chain Monte Carlo algorithm ($\operatorname{Ex^2MCMC}$) that combines multiple global proposals and local moves. The proposed method is massively parallelizable and extremely computationally efficient. We prove $V$-uniform geometric ergodicity of $\operatorname{Ex^2MCMC}$ under realistic conditions and compute explicit bounds on the mixing rate showing the improvement brought by the multiple global moves. We show that $\operatorname{Ex^2MCMC}$ allows fine-tuning of exploitation (local moves) and exploration (global moves) via a novel approach to proposing dependent global moves. Finally, we develop an adaptive scheme, $\operatorname{FlEx^2MCMC}$, that learns the distribution of global moves using normalizing flows. We illustrate the efficiency of $\operatorname{Ex^2MCMC}$ and its adaptive versions on many classical sampling benchmarks. We also show that these algorithms improve the quality of sampling GANs as energy-based models.
翻译:我们开发了一个“探索-探索”的Markov连锁 Monte Carlo 算法($\opatorname{Ex=2MC}$),该算法结合了多种全球提议和本地动作。拟议的方法非常平行,而且极具计算效率。我们证明美元在现实条件下是美元=operatorname{Ex=2MCMC}美元,并计算出显示多种全球动作带来的改进的混合率的明确界限。我们显示$=operatorname{Ex=2MC}美元能够通过一种新颖的方法微调利用(本地移动)和探索(全球移动),提出依赖性全球动作。最后,我们开发了一个适应性方案,即$\operatorname{Fl=2MC}美元,用正常流来学习全球移动的分布。我们演示了美元=operatorname{Ex=2MC}美元及其在许多典型抽样基准上的适应性版本的效率。我们还表明,这些算法提高了将GAN作为能源基模型的抽样质量。