Diffusion tensor imaging (DTI) has been used to study the effects of neurodegenerative diseases on neural pathways, which may lead to more reliable and early diagnosis of these diseases as well as a better understanding of how they affect the brain. We introduce an intelligent visual analytics system for studying patient groups based on their labeled DTI fiber tract data and corresponding statistics. The system's AI-augmented interface guides the user through an organized and holistic analysis space, including the statistical feature space, the physical space, and the space of patients over different groups. We use a custom machine learning pipeline to help narrow down this large analysis space, and then explore it pragmatically through a range of linked visualizations. We conduct several case studies using real data from the research database of Parkinson's Progression Markers Initiative.
翻译:传播高压成像(DTI)被用于研究神经退化性疾病对神经途径的影响,这可能导致更可靠和更早地诊断这些疾病,以及更好地了解这些疾病如何影响大脑。我们引入了一个智能视觉分析系统,以根据被贴上标签的DTI纤维质数据和相应的统计数据来研究病人群体。该系统的AI强化界面通过一个有组织和整体的分析空间(包括统计特征空间、物理空间和病人在不同群体中的空间)来引导用户。我们使用一个定制的机器学习管道来帮助缩小这个大型分析空间,然后通过一系列相连的可视化进行务实的探索。我们利用帕金森进步标记倡议研究数据库中的真实数据进行了几项案例研究。