We consider partially-specified optimization problems where the goal is to actively, but efficiently, acquire missing information about the problem in order to solve it. An algorithm designer wishes to solve a linear program (LP), $\max \mathbf{c}^T \mathbf{x}$ s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \ge \mathbf{0}$, but does not initially know some of the parameters. The algorithm can iteratively choose an unknown parameter and gather information in the form of a noisy sample centered at the parameter's (unknown) value. The goal is to find an approximately feasible and optimal solution to the underlying LP with high probability while drawing a small number of samples. We focus on two cases. (1) When the parameters $\mathbf{c}$ of the objective are initially unknown, we take an information-theoretic approach and give roughly matching upper and lower sample complexity bounds, with an (inefficient) successive-elimination algorithm. (2) When the parameters $\mathbf{b}$ of the constraints are initially unknown, we propose an efficient algorithm combining techniques from the ellipsoid method for LP and confidence-bound approaches from bandit algorithms. The algorithm adaptively gathers information about constraints only as needed in order to make progress. We give sample complexity bounds for the algorithm and demonstrate its improvement over a naive approach via simulation.


翻译:我们考虑部分指定的优化问题, 目标是积极但高效地获取缺少的信息, 以便解决这个问题。 算法设计者希望解决线性程序( LP), $\maxbf{c} T\mathbf{x} 美元 s.t. $\mathbf{A ⁇ mathbbf{x}\leq\mathbf{b}}},\mathb{x} {x}, 但它最初并不了解某些参数。 算法设计者希望反复选择一个未知的参数, 并收集以参数( 未知) 值为中心的杂音样本信息。 目标是在提取少量样本的同时找到一个大致可行和最佳的解决方案。 我们只关注两个案例 。 (1) 当参数 $\mathbb{P} {c} 将目标的精度转化为初始的精度方法时, 我们采取信息理论性的方法, 并大致地将精度精度的精度的精度的精度范围绑起来, 。 当我们提出一个未知的精度的精度方法 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
44+阅读 · 2021年9月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月22日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2021年9月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员