A hallmark of chaotic dynamics is the loss of information with time. Although information loss is often expressed through a connection to Lyapunov exponents -- valid in the limit of high information about the system state -- this picture misses the rich spectrum of information decay across different levels of granularity. Here we show how machine learning presents new opportunities for the study of information loss in chaotic dynamics, with a double pendulum serving as a model system. We use the Information Bottleneck as a training objective for a neural network to extract information from the state of the system that is optimally predictive of the future state after a prescribed time horizon. We then decompose the optimally predictive information by distributing a bottleneck to each state variable, recovering the relative importance of the variables in determining future evolution. The framework we develop is broadly applicable to chaotic systems and pragmatic to apply, leveraging data and machine learning to monitor the limits of predictability and map out the loss of information.
翻译:混乱动态的一个标志是随着时间而丢失信息。虽然信息丢失常常通过连接Lyapunov Exponents来表达 -- -- 这在系统状态的高信息限度内是有效的 -- -- 这个图片忽略了不同颗粒度不同层次的丰富信息衰减范围。这里我们展示机器学习如何为研究混乱动态中的信息损失提供新的机会,同时使用双钟摆作为模型系统。我们利用信息瓶颈作为神经网络的培训目标,从系统状态中提取信息,该系统在规定的时间范围后对未来状态进行最佳预测。然后我们通过向每个州变量分配瓶盖,恢复变量在决定未来演变过程中的相对重要性,从而将最佳预测信息分离出来。我们开发的框架广泛适用于混乱系统和实用应用,利用数据和机器学习来监测可预测性的限度并绘制信息损失图。