One of the most fundamental method for comparing two given strings $A$ and $B$ is the longest common subsequence (LCS), where the task is to find (the length) of the longest common subsequence. In this paper, we address the STR-IC-LCS problem which is one of the constrained LCS problems proposed by Chen and Chao [J. Comb. Optim, 2011]. A string $Z$ is said to be an STR-IC-LCS of three given strings $A$, $B$, and $P$, if $Z$ is one of the longest common subsequences of $A$ and $B$ that contains $P$ as a substring. We present a space efficient solution for the STR-IC-LCS problem. Our algorithm computes the length of an STR-IC-LCS in $O(n^2)$ time and $O((\ell+1)(n-\ell+1))$ space where $\ell$ is the length of a longest common subsequence of $A$ and $B$ of length $n$. When $\ell = O(1)$ or $n-\ell = O(1)$, then our algorithm uses only linear $O(n)$ space.
翻译:比较两个给定的字符串(A$和B$)的最根本方法之一,是两个给定的字符串(LCS)的最长期的共同子序列(LCS),其中的任务是找到(长度)最长的共同子序列(LCS),在本文件中,我们处理STR-IC-LCS问题,这是陈和Chao[J.Comb.Optim,2011年]提出的有限LCS问题之一。一个字符串(Z),据说是STR-IC-LCS,其中三个给定的字符串(A美元)、B美元,其中Z美元是美元,而美元是最长的共同子序列(美元)之一,而美元为美元,而美元=美元=美元。