The need to guarantee safety of collaborative robots limits their performance, in particular, their speed and hence cycle time. The standard ISO/TS 15066 defines the Power and Force Limiting operation mode and prescribes force thresholds that a moving robot is allowed to exert on human body parts during impact, along with a simple formula to obtain maximum allowed speed of the robot in the whole workspace. In this work, we measure the forces exerted by two collaborative manipulators (UR10e and KUKA LBR iiwa) moving downward against an impact measuring device. First, we empirically show that the impact forces can vary by more than 100 percent within the robot workspace. The forces are negatively correlated with the distance from the robot base and the height in the workspace. Second, we present a data-driven model, 3D Collision-Force-Map, predicting impact forces from distance, height, and velocity and demonstrate that it can be trained on a limited number of data points. Third, we analyze the force evolution upon impact and find that clamping never occurs for the UR10e. We show that formulas relating robot mass, velocity, and impact forces from ISO/TS 15066 are insufficient -- leading both to significant underestimation and overestimation and thus to unnecessarily long cycle times or even dangerous applications. We propose an empirical method that can be deployed to quickly determine the optimal speed and position where a task can be safely performed with maximum efficiency.


翻译:需要确保协作机器人的安全,特别是其速度和周期时间。标准ISO/TS 15066标准ISO/TS 15066界定了电力和力限操作模式,并规定了在撞击期间允许移动机器人对人体器官施压的强度阈值,以及获得整个工作空间内机器人最大允许速度的最允许速度的简单公式。在这项工作中,我们测量两个协作操纵器(UR10e和KUKA LBR iiwa)相对于撞击测量装置向下移动的力。首先,我们经验显示,撞击力在机器人工作空间内可能变化超过100%。这些力与机器人基地的距离和工作空间的高度呈负相关关系。第二,我们提出了一个数据驱动模型,3Dcolision-For-Map,从距离、高度和速度来预测影响力的最大化。我们可以用数量有限的数据点来分析撞击力的演变情况,并发现,对UR10e的冲击力永远不会发生连结。我们显示,与机器人质量、速度和速度之间的公式与机器人距离以及工作空间的高度有关,因此,从ISO/TSlevisimimimiming lavestration laft be a lax a lax a lax apress a lax be lax apress apress amin lax lax lax lax lax lax a lax a lax lax to latime a lad lad lax to lax lax be lad lad lad lad lad lade lade lad lad

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
1+阅读 · 2021年5月18日
Arxiv
9+阅读 · 2018年5月22日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员