It is well known that locomotion-dominated navigation tasks may highly provoke cybersickness effects. Past research has proposed numerous approaches to tackle this issue based on offline considerations. In this work, a novel approach to mitigate cybersickness is presented based on online adaptative navigation. Considering the Proportional-Integral-Derivative (PID) control method, we proposed a mathematical model for online adaptive navigation parameterized with several parameters, taking as input the users' electro-dermal activity (EDA), an efficient indicator to measure the cybersickness level, and providing as output adapted navigation accelerations. Therefore, minimizing the cybersickness level is regarded as an argument optimization problem: find the PID model parameters which can reduce the severity of cybersickness. User studies were organized to collect non-adapted navigation accelerations and the corresponding EDA signals. A deep neural network was then formulated to learn the correlation between EDA and navigation accelerations. The hyperparameters of the network were obtained through the Optuna open-source framework. To validate the performance of the optimized online adaptive navigation developed through the PID control, we performed an analysis in a simulated user study based on the pre-trained deep neural network. Results indicate a significant reduction of cybersickness in terms of EDA signal analysis and motion sickness dose value. This is a pioneering work which presented a systematic strategy for adaptive navigation settings from a theoretical point.


翻译:众所周知,以运动为主的导航任务可能会引起晕动病的高度发生。过去的研究提出了许多基于离线考虑的方法来解决这个问题。在本研究中,提出了一种基于在线自适应导航的新方法来缓解晕动病。考虑到比例-积分-微分(PID)控制方法,我们提出了一个数学模型来对在线自适应导航进行参数化,该模型参数化了多个参数,以用户的皮肤电活动(EDA)作为输入,这是一种评估晕动病水平的有效指标,并提供适应导航加速度作为输出。因此,将最小化晕动病水平视为参数优化问题:找到可以减少晕动病严重程度的PID模型参数。进行了用户研究以收集未经适应的导航加速度和相应的EDA信号。然后构建了一个深度神经网络来学习EDA和导航加速度之间的相关性。网络的超参数通过Optuna开源框架获得。为验证通过PID控制开发的优化在线自适应导航的性能,我们在基于预训练的深度神经网络的模拟用户研究中进行了分析。结果表明,在EDA信号分析和运动晕病剂量价值方面,晕动病显著降低。这是一项有关自适应导航设置的倡导性工作,从理论上提出了一种系统策略。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
19+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
19+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员