Cryogenic electron microscopy (cryo-EM) provides a unique opportunity to study the structural heterogeneity of biomolecules. Being able to explain this heterogeneity with atomic models would help our understanding of their functional mechanisms but the size and ruggedness of the structural space (the space of atomic 3D cartesian coordinates) presents an immense challenge. Here, we describe a heterogeneous reconstruction method based on an atomistic representation whose deformation is reduced to a handful of collective motions through normal mode analysis. Our implementation uses an autoencoder. The encoder jointly estimates the amplitude of motion along the normal modes and the 2D shift between the center of the image and the center of the molecule . The physics-based decoder aggregates a representation of the heterogeneity readily interpretable at the atomic level. We illustrate our method on 3 synthetic datasets corresponding to different distributions along a simulated trajectory of adenylate kinase transitioning from its open to its closed structures. We show for each distribution that our approach is able to recapitulate the intermediate atomic models with atomic-level accuracy.
翻译:冷冻电子显微镜( cryo- EM) 提供了一个独特的机会来研究生物分子的结构异质性。 能够解释原子模型的这种异质性会帮助我们理解其功能机制, 但结构空间的大小和坚固度( 原子 3D 碳酸盐座标的空间) 是一个巨大的挑战。 这里, 我们描述一种基于原子学的多元重建方法, 它的变形通过正常模式分析降低为少数集体运动。 我们的实施使用一个自动编码器。 编码器共同估计了运动在正常模式下的振幅以及图像中心与分子中心之间的2D变化。 基于物理的解码器综合了原子一级可以随时解释的异质的表示。 我们用三种合成数据集来说明与不同分布相匹配的方法, 以及从其开放的结构向封闭结构的叠变离子细胞转变的模拟轨迹轨迹。 我们为每一种分布显示, 我们的方法都能够用原子水平的精确度来重新定位中间原子模型。