Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published method offers both lossless and near-lossless modes. In this paper, we propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression. In the lossless mode, the DLPR coding system first performs lossy compression and then lossless coding of residuals. We solve the joint lossy and residual compression problem in the approach of VAEs, and add autoregressive context modeling of the residuals to enhance lossless compression performance. In the near-lossless mode, we quantize the original residuals to satisfy a given $\ell_\infty$ error bound, and propose a scalable near-lossless compression scheme that works for variable $\ell_\infty$ bounds instead of training multiple networks. To expedite the DLPR coding, we increase the degree of algorithm parallelization by a novel design of coding context, and accelerate the entropy coding with adaptive residual interval. Experimental results demonstrate that the DLPR coding system achieves both the state-of-the-art lossless and near-lossless image compression performance with competitive coding speed.
翻译:对医学、遥感、精密工程和科学研究等许多技术领域的专业用户来说,无损和近乎无损图像压缩至关重要。但是,尽管对基于学习的图像压缩的研究兴趣迅速增长,但没有任何公开的方法可以提供无损和近乎无损的模式。在本文中,我们提议为无损和近乎无损图像压缩提供一个统一和强大的深度损失加剩余值(DLPR)编码框架。在无损模式中,DLPR编码系统首先进行亏损压缩,然后对残余物进行无损编码。我们解决了VAE公司方法中的联合损失和剩余压缩问题,并增加了残余物自动递增环境模型以提升无损压缩性能。在接近无损模式中,我们建议对原始剩余物进行量化,以满足给定的$ellinfty 和近于无损的图像压缩。为了加速DLPR的编码,我们增加了对剩余物进行成本和剩余物的自动递增环境模型化程度,同时通过新设计的DSlovealalalal-deal-restialal Reduding resulational-deal-restial-deal-deal-deal-restidududududududududududududududududududududududududududududududucal 和Cal acal acal acal-de co covaldududucal acal coal comental codudududududucal 和Cal codudududucal acal acal 和Cal acal-caldmentaldmental 和Cal 并演演演演。我们加速进行新的设计,我们Cal-Cal-cal-Cal 和Cal-cal-cal-Cal-演。我们。我们,我们。我们,我们,我们,我们化的升级和Cal-演。我们制制制制制制的升级的升级的升级和新设计,我们。我们制的升级和新设计,我们将加速的升级和新设计,我们制的升级和新设计,我们的升级的升级的升级的升级的升级的升级的升级的升级和新演演演演演演制制制