We study fair allocation of indivisible goods when agents have matroid rank valuations. Our main contribution is a simple algorithm based on the colloquial Yankee Swap procedure that computes provably fair and efficient Lorenz dominating allocations. While there exist polynomial time algorithms to compute such allocations, our proposed method improves on them in two ways. (a) Our approach is easy to understand and does not use complex matroid optimization algorithms as subroutines. (b) Our approach is scalable; it is provably faster than all known algorithms to compute Lorenz dominating allocations. These two properties are key to the adoption of algorithms in any real fair allocation setting; our contribution brings us one step closer to this goal.
翻译:我们研究的是,当代理商拥有类固醇等级估值时,不可分割货物的公平分配。我们的主要贡献是基于学术性扬基斯·斯瓦普程序的简单算法,该算法计算出公平而高效的洛伦茨主导分配。虽然存在计算这种分配的多元时间算法,但我们建议的方法在两种方式上改进了它们。 (a) 我们的方法很容易理解,并且不使用复杂的类固醇优化算法作为子路由。 (b) 我们的方法可以伸缩;计算洛伦茨主导分配的算法比所有已知的算法速度要快。这两种特性对于在任何真正的公平分配环境中采用算法至关重要;我们的贡献使我们更接近这一目标。