Observational studies are needed when experiments are not possible. Within study comparisons (WSC) compare observational and experimental estimates that test the same hypothesis using the same treatment group, outcome, and estimand. Meta-analyzing 39 of them, we compare mean bias and its variance for the eight observational designs that result from combining whether there is a pretest measure of the outcome or not, whether the comparison group is local to the treatment group or not, and whether there is a relatively rich set of other covariates or not. Of these eight designs, one combines all three design elements, another has none, and the remainder include any one or two. We found that both the mean and variance of bias decline as design elements are added, with the lowest mean and smallest variance in a design with all three elements. The probability of bias falling within 0.10 standard deviations of the experimental estimate varied from 59 to 83 percent in Bayesian analyses and from 86 to 100 percent in non-Bayesian ones -- the ranges depending on the level of data aggregation. But confounding remains possible due to each of the eight observational study design cells including a different set of WSC studies.


翻译:在研究比较(WSC)中,我们比较了使用同一治疗组、结果和估计值测试同一假设的观测和实验估计值。Meta-分析39,我们比较了八种观察设计图的偏差和差异,这八种观察设计图的偏差和差异分别来自:是否对结果进行预先测试,比较组是否对治疗组进行局部测试,是否对治疗组进行初步测试,以及是否有相对丰富的一组其他共变体。在这八种设计图中,有一个将所有三个设计要素结合起来,另一个没有,其余的则包括任何一两个。我们发现,在设计组中,偏差下降的平均值和差异都是增加的,在设计中,与所有三个要素的平均值和差异最小。在Bayesian分析中,偏差在0.10标准偏差范围内的概率从59%到83%不等,在非Bayesian研究中,偏差从86%到100%不等 -- -- 视数据汇总程度而定。但是,由于八种观察研究组别,包括一套不同的WSC研究,因此仍然有可能出现偏差差。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
104+阅读 · 2021年8月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
5+阅读 · 2020年12月10日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员