We present an ecosystem simulator with three-dimensional models of topography and terrain. The simulator includes animal models that are individually controlled by deep reinforcement learning. The simulations take place in a game engine environment, which enables continuous observation of the ecosystem from any camera angle. The topographic models are generated from geographic data with altitudes and land cover type. The animal models combine three-dimensional conformation models and animation schemes with decision-making mechanisms trained with deep reinforcement learning in increasingly complex environments (curriculum learning). We show how this framework can be used for simulating the development of specific ecosystems with or without different forms of human intervention. In particular, we show how it can be used for studying local biodiversity effects of land use change, exploitation of natural resources, pollution, invasive species, and climate change.
翻译:我们展示了具有三维地形和地形模型的生态系统模拟器。模拟器包括由深度强化学习单独控制的动物模型。模拟器在游戏引擎环境中进行,从任何摄像角度对生态系统进行持续观测。地形模型来自具有高度和土地覆盖类型的地理数据。动物模型结合了三维一致性模型和动画图案以及经过在日益复杂的环境中进行深层强化学习(课程学习)培训的决策机制。我们展示了如何利用这一框架模拟特定生态系统的发展,无论是否采用不同形式的人类干预。我们尤其展示了如何利用这一框架研究土地使用变化、自然资源开发、污染、入侵物种和气候变化对当地生物多样性的影响。