The use of synthetic data is recognized as a crucial step in the development of neural network-based Artificial Intelligence (AI) systems. While the methods for generating synthetic data for AI applications in other domains have a role in certain biomedical AI systems, primarily related to image processing, there is a critical gap in the generation of time series data for AI tasks where it is necessary to know how the system works. This is most pronounced in the ability to generate synthetic multi-dimensional molecular time series data (SMMTSD); this is the type of data that underpins research into biomarkers and mediator signatures for forecasting various diseases and is an essential component of the drug development pipeline. We argue the insufficiency of statistical and data-centric machine learning (ML) means of generating this type of synthetic data is due to a combination of factors: perpetual data sparsity due to the Curse of Dimensionality, the inapplicability of the Central Limit Theorem, and the limits imposed by the Causal Hierarchy Theorem. Alternatively, we present a rationale for using complex multi-scale mechanism-based simulation models, constructed and operated on to account for epistemic incompleteness and the need to provide maximal expansiveness in concordance with the Principle of Maximal Entropy. These procedures provide for the generation of SMMTD that minimizes the known shortcomings associated with neural network AI systems, namely overfitting and lack of generalizability. The generation of synthetic data that accounts for the identified factors of multi-dimensional time series data is an essential capability for the development of mediator-biomarker based AI forecasting systems, and therapeutic control development and optimization through systems like Drug Development Digital Twins.


翻译:合成数据的使用被认为是开发基于神经网络的人工智能系统的关键步骤。虽然在其他领域的应用生成合成数据的方法在某些生物医学人工智能系统中发挥了作用,主要涉及图像处理,但在生成时序数据用于需要了解该系统如何工作的人工智能任务方面存在重要差距。这个差距在于生成合成多维分子时间序列数据(SMMTSD),这是预测各种疾病的生物标志物和调节因子签名研究的基础数据类型,并且是药物开发流水线的重要组成部分。我们认为,使用统计和数据中心的机器学习(ML)方法来生成这种合成数据的不足是由多种因素共同导致的:由于维数灾难,中心极限定理的不适用性和因果层级定理所施加的限制而导致的永久性数据稀疏。相反,我们提出使用复杂的多尺度基于机制的模拟模型来进行模拟,这些模型在构建和操作时应考虑到认识上的不完整性,并需要根据最大熵原理提供最大的扩张性。这些操作提供了 SMMTD 生成,该生成最小化了神经网络人工智能系统的已知缺陷,即过度拟合和缺乏通用性。考虑到多维时间序列数据的识别因素而生成合成数据是开发调节分子-生物标志物为基础的人工智能预测系统和通过药物开发数字孪生体系进行治疗控制开发和优化的重要能力。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
药物发现中的深度学习
专知会员服务
39+阅读 · 2022年11月14日
用于药物发现的抗体表征学习
专知会员服务
9+阅读 · 2022年10月31日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
药物发现中的深度学习
专知
3+阅读 · 2022年11月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关VIP内容
药物发现中的深度学习
专知会员服务
39+阅读 · 2022年11月14日
用于药物发现的抗体表征学习
专知会员服务
9+阅读 · 2022年10月31日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员