In this paper we prove a new abstract stability result for perturbed saddle-point problems based on a norm fitting technique. We derive the stability condition according to Babu\v{s}ka's theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babu\v{s}ka-Brezzi (LBB) condition, and the other standard assumptions in Brezzi's theory, in a combined abstract norm. The construction suggests to form the latter from individual {\it fitted} norms that are composed from proper seminorms. This abstract framework not only allows for simpler (shorter) proofs of many stability results but also guides the design of parameter-robust norm-equivalent preconditioners. These benefits are demonstrated on mixed variational formulations of generalized Poisson, Stokes, vector Laplace and Biot's equations.


翻译:在本文中,我们证明了基于规范安装技术的受扰动马鞍问题的新抽象稳定结果。 我们根据Babu\v{s{s}ka的理论,从一个小的软质条件(类似于著名的Ladyzenskaya-Babu\v}s}ka-Brezzi(LBB)条件)和Brezzi理论中的其他标准假设(综合抽象规范)中得出了一个新的抽象稳定结果。 构建建议从由适当的准规范构成的个体(适合的)规范中形成后一种稳定结果。 这个抽象框架不仅允许对许多稳定性结果进行更简单的(短)证明,而且还指导参数-robust规范等同先决条件的设计。 这些好处表现在普瓦森、斯托克斯、矢量拉贝和生物等式的混合变式配方中。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2021年5月14日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月19日
The Completion of Covariance Kernels
Arxiv
0+阅读 · 2021年7月19日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2021年5月14日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员