Researchers frequently estimate the average treatment effect (ATE) in logs, which has the desirable property that its units approximate percentages. When the outcome takes on zero values, researchers often use alternative transformations (e.g., $\log(1+Y)$, $\mathrm{arcsinh}(Y)$) that behave like $\log(Y)$ for large values of $Y$, and interpret the units as percentages. In this paper, we show that ATEs for transformations other than $\log(Y)$ cannot be interpreted as percentages, at least if one imposes the seemingly reasonable requirement that a percentage does not depend on the original scaling of the outcome (e.g. dollars versus cents). We first show that if $m(y)$ is a function that behaves like $\log(y)$ for large values of $y$ and the treatment affects the probability that $Y=0$, then the ATE for $m(Y)$ can be made arbitrarily large or small in magnitude by re-scaling the units of $Y$. Moreover, we show that any parameter of the form $\theta_g = E[ g(Y(1),Y(0)) ]$ is necessarily scale dependent if it is point-identified and defined with zero-valued outcomes. We conclude by outlining a variety of options available to empirical researchers dealing with zero-valued outcomes, including (i) estimating ATEs for normalized outcomes, (ii) explicitly calibrating the value placed on the extensive versus intensive margins, or (iii) estimating separate effects for the intensive and extensive margins.
翻译:研究人员经常估计日志中的平均处理效果( ATE) 。 日志中的平均处理效果( ATE) 具有其单位大致百分比的合理性。 当结果以零值计算时, 研究人员经常使用替代的变换( 例如, 美元( 1+Y) 美元, 美元( mathrm) {arcsinh} (Y) 美元), 其表现为$( log( Y) 美元( Y) 美元( Y) ), 并将单位单位的变换( 美元( Y) 美元( Y) ) 不能被解释为百分比( 美元( ) 美元( Y) 的变换值( ) 似乎合理的要求, 百分比不取决于结果的最初缩放( 例如, 美元对美) 。 我们首先显示, 如果美元( ) 美元( ) 美元( ) 美元( 美元) 的变价( ) 或( 美元( ) 美元( ) 的变价( ) 的变价( ) 和( 我们表示, 货币( ) ) 直值) 的变值( 的变值( ) ) 或变值( ) 的变值( ) 或变值) 或变值) 直值( 我们的变值) ( 我们) ) 的变值) 或变值), 我们的变的变的比值( 。