This paper firstly presents old photo modernization using multiple references by performing stylization and enhancement in a unified manner. In order to modernize old photos, we propose a novel multi-reference-based old photo modernization (MROPM) framework consisting of a network MROPM-Net and a novel synthetic data generation scheme. MROPM-Net stylizes old photos using multiple references via photorealistic style transfer (PST) and further enhances the results to produce modern-looking images. Meanwhile, the synthetic data generation scheme trains the network to effectively utilize multiple references to perform modernization. To evaluate the performance, we propose a new old photos benchmark dataset (CHD) consisting of diverse natural indoor and outdoor scenes. Extensive experiments show that the proposed method outperforms other baselines in performing modernization on real old photos, even though no old photos were used during training. Moreover, our method can appropriately select styles from multiple references for each semantic region in the old photo to further improve the modernization performance.
翻译:本文首先提出了一种使用多个参考图像进行旧照片现代化的方法,通过统一的方式进行风格化和增强。为实现旧照片的现代化,我们提出了一种新颖的基于多个参考图像的旧照片现代化(MROPM)框架,包括一个网络MROPM-Net和一种新颖的合成数据生成方案。MROPM-Net利用基于照片真实风格迁移(PST)的多参考图像对旧照片进行风格化,并进一步提高结果以生成现代化的图像。同时,合成数据生成方案训练网络以有效利用多个参考图像进行现代化。为评估性能,我们提出了一个新的旧照片基准数据集(CHD),包括各种各样的自然室内和室外场景。广泛的实验表明,该方法在现实旧照片的现代化方面优于其他基准方法,即使在训练过程中没有使用旧照片。此外,我们的方法可以为旧照片中的每个语义区域适当地选择多个参考图像的样式来进一步提高现代化的性能。