Emotional support is a crucial skill for many real-world scenarios, including caring for the elderly, mental health support, and customer service chats. This paper presents a novel task of empathetic dialog generation with positive emotion elicitation to promote users' positive emotions, similar to that of emotional support between humans. In this task, the agent conducts empathetic responses along with the target of eliciting the user's positive emotions in the multi-turn dialog. To facilitate the study of this task, we collect a large-scale emotional dialog dataset with positive emotion elicitation, called PosEmoDial (about 820k dialogs, 3M utterances). In these dialogs, the agent tries to guide the user from any possible initial emotional state, e.g., sadness, to a positive emotional state. Then we present a positive-emotion-guided dialog generation model with a novel loss function design. This loss function encourages the dialog model to not only elicit positive emotions from users but also ensure smooth emotional transitions along with the whole dialog. Finally, we establish benchmark results on PosEmoDial, and we will release this dataset and related source code to facilitate future studies.
翻译:情感支持是许多现实世界情景中的关键技能, 包括照顾老年人、 心理健康支持、 客户服务聊天。 本文展示了一次新颖的任务, 即以积极情感激发的方式进行同情性对话, 以激发用户的积极情绪, 类似于人类之间的情感支持。 在此任务中, 代理进行同情性反应, 并设定在多点对话中激发用户积极情绪的目标 。 为了方便此项任务的研究, 我们收集了一个大型情感对话数据集, 名为PosEmoDial( 约820k 对话框, 3M 发音 ) 。 在这些对话中, 代理试图引导用户从任何可能的初始情感状态, 例如悲伤, 到一个积极的情感状态。 然后我们展示一个积极情感引导对话生成模型, 并配有新颖的损失函数设计 。 这个损失功能鼓励对话模式不仅从用户那里获取积极的情绪, 并且确保与整个对话一起平稳的情感转变。 最后, 我们为PosEmoDial 设定了基准结果, 我们将发布此数据和相关源代码 。