Automated claim checking is the task of determining the veracity of a claim given evidence found in a knowledge base of trustworthy facts. While previous work has taken the knowledge base as given and optimized the claim-checking pipeline, we take the opposite approach - taking the pipeline as given, we explore the choice of knowledge base. Our first insight is that a claim-checking pipeline can be transferred to a new domain of claims with access to a knowledge base from the new domain. Second, we do not find a "universally best" knowledge base - higher domain overlap of a task dataset and a knowledge base tends to produce better label accuracy. Third, combining multiple knowledge bases does not tend to improve performance beyond using the closest-domain knowledge base. Finally, we show that the claim-checking pipeline's confidence score for selecting evidence can be used to assess whether a knowledge base will perform well for a new set of claims, even in the absence of ground-truth labels.
翻译:自动理赔是确定在可靠事实知识库中发现的某一索赔证据的真实性的任务。虽然先前的工作以所提供的知识基础为基础,优化了理赔管道,但我们采取了相反的方法,即按给定的管道选择,探索知识基础的选择。我们的第一个见解是,可以将一个索赔核实管道转移到一个新的索赔领域,从新领域进入知识库。第二,我们没有找到一个“普遍最佳”的知识库——任务数据集的更高域重叠和知识库往往产生更好的标签准确性。第三,将多个知识基础结合起来,除了使用最接近的知识基础外,不会改善业绩。最后,我们表明,利用索赔核实管道选择证据的可信度分数可以用来评估一个知识基础是否对一套新的索赔具有良好的效果,即使没有地面真相标签。