Anomalous diffusion occurs at very different scales in nature, from atomic systems to motions in cell organelles, biological tissues or ecology, and also in artificial materials, such as cement. Being able to accurately measure the anomalous exponent associated with a given particle trajectory, thus determining whether the particle subdiffuses, superdiffuses or performs normal diffusion is of key importance to understand the diffusion process. Also, it is often important to trustingly identify the model behind the trajectory, as this gives a large amount of information on the system dynamics. Both aspects are particularly difficult when the input data are short and noisy trajectories. It is even more difficult if one cannot guarantee that the trajectories output in experiments is homogeneous, hindering the statistical methods based on ensembles of trajectories. We present a data-driven method able to infer the anomalous exponent and to identify the type of anomalous diffusion process behind single, noisy and short trajectories, with good accuracy. This model was used in our participation in the Anomalous Diffusion (AnDi) Challenge. A combination of convolutional and recurrent neural networks were used to achieve state-of-the-art results when compared to methods participating in the AnDi Challenge, ranking top 4 in both classification and diffusion exponent regression.


翻译:异常扩散发生在性质上,从原子系统到细胞器官、生物组织或生态运动,以及水泥等人工材料的不同尺度上,从原子系统到细胞器官、生物组织或生态运动,以及人工材料,如水泥。能够准确地测量与特定粒子轨迹相关的异常现象,从而确定粒子子子子吸附、超异差或正常扩散是否对理解扩散过程至关重要。此外,人们往往必须信任地确定轨迹背后的模型,因为这能提供大量关于系统动态的信息。当输入数据短而杂乱的轨迹时,这两个方面尤其困难。如果无法保证实验中的轨迹输出是同质的,从而阻碍基于轨迹集合的统计方法对理解扩散过程至关重要,那么,就更加困难了。我们提出了一个数据驱动方法,能够推断异常现象突出,并查明单项、响亮和短项轨迹背后的反常态扩散过程类型,并且非常精确地说明了这两个方面的情况。这种模型被用于我们参与反常态变变变变变的网络,在参与前变变变变变的网络中使用了前变的组合,用来进行前变式变式变式变式分析。

0
下载
关闭预览

相关内容

循环神经网络(RNN)是一类人工神经网络,其中节点之间的连接沿时间序列形成有向图。 这使其表现出时间动态行为。 RNN源自前馈神经网络,可以使用其内部状态(内存)来处理可变长度的输入序列。这使得它们适用于诸如未分段的,连接的手写识别或语音识别之类的任务。
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员