Generally, humanoid robots usually suffer significant impact force when walking or running in a non-predefined environment that could easily damage the actuators due to high stiffness. In recent years, the usages of passive, compliant series elastic actuators (SEA) for driving humanoid's joints have proved the capability in many aspects so far. However, despite being widely applied in the biped robot research field, the stable control problem for a humanoid powered by the SEAs, especially in the walking process, is still a challenge. This paper proposes a model reference adaptive control (MRAC) combined with the backstepping algorithm to deal with the parameter uncertainties in a humanoid's lower limb driven by the SEA system. This is also an extension of our previous research (Lanh et al.,2021). Firstly, a dynamic model of SEA is obtained. Secondly, since there are unknown and uncertain parameters in the SEA model, a model reference adaptive controller (MRAC) is employed to guarantee the robust performance of the humanoid's lower limb. Finally, an experiment is carried out to evaluate the effectiveness of the proposed controller and the SEA mechanism.
翻译:一般而言,人类机器人在非预定环境中行走或运行时通常会受到巨大的冲击力,这种影响很容易因高度僵硬而损害动因。近年来,用于驱动人体结关的被动的、符合要求的系列弹性活性器(SEA)的使用已证明了迄今为止在许多方面的能力。然而,尽管在双胞胎机器人研究领域广泛应用了这种能力,但SEA提供动力的人类的稳定的控制问题,特别是在行走过程中,仍然是一个挑战。本文件提议采用一个示范参考适应控制(MRC)结合后步算法来处理由SEA系统驱动的人体下肢的参数不确定性。这也是我们先前研究(Lanh等人,2021)的延伸。首先,SEA的动态模型已经获得。第二,由于SEA模型中存在未知和不确定的参数,因此使用一个示范参考适应控制器(MRC)来保证人体下肢的稳健性功能。最后,进行了一项实验,以评估拟议的控制器和SEA机制的有效性。