The three-state illness death model has been established as a general approach for regression analysis of semi-competing risks data. For observational data the marginal structural models (MSM) are a useful tool, under the potential outcomes framework to define and estimate parameters with causal interpretations. In this paper we introduce a class of marginal structural illness death models for the analysis of observational semi competing risks data. We consider two specific such models, the usual Markov illness death MSM and the general Markov illness death MSM where the latter incorporates a frailty term. For interpretation purposes, risk contrasts under the MSMs are defined. Inference under the usual Markov MSM can be carried out using estimating equations with inverse probability weighting, while inference under the general Markov MSM requires a weighted EM algorithm. We study the inference procedures under both MSMs using extensive simulations, and apply them to the analysis of mid-life alcohol exposure on late life cognitive impairment as well as mortality using the Honolulu-Asia Aging Study data set. The R codes developed in this work have been implemented in the R package semicmprskcoxmsm that is publicly available on CRAN.
翻译:在观察数据中,边缘结构模型(MSM)是一种有用的工具,根据潜在结果框架界定和估计因果解释参数。在本文件中,我们引入了一类边缘结构疾病死亡模型,用于分析观测半相竞风险数据。我们考虑了两种具体模型,即通常的Markov疾病死亡MSM和一般的Markov疾病死亡MSM,后者包含一个脆弱术语。为解释目的,对MSMM下的风险进行了对比。在通常的Markov MSM下,可以使用具有反概率加权的估算方程进行推断,而在一般的Markov MSM下,推断需要一个加权EM算法。我们用广泛的模拟方法研究MSM的边缘结构疾病死亡模型的推断程序,并运用Honolulu-Asia 老龄化研究数据集,用于分析寿命晚认知缺陷和死亡率的中期酒精接触情况。在R组合中开发的R代码已在R包半cmskoxms中实施。