Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimization method based on its performance on a set of training problems. This data-driven procedure generates methods that can efficiently solve problems similar to those in the training. In sharp contrast, the typical and traditional designs of optimization methods are theory-driven, so they obtain performance guarantees over the classes of problems specified by the theory. The difference makes L2O suitable for repeatedly solving a certain type of optimization problems over a specific distribution of data, while it typically fails on out-of-distribution problems. The practicality of L2O depends on the type of target optimization, the chosen architecture of the method to learn, and the training procedure. This new paradigm has motivated a community of researchers to explore L2O and report their findings. This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization. We set up taxonomies, categorize existing works and research directions, present insights, and identify open challenges. We also benchmarked many existing L2O approaches on a few but representative optimization problems. For reproducible research and fair benchmarking purposes, we released our software implementation and data in the package Open-L2O at https://github.com/VITA-Group/Open-L2O.
翻译:优化学习(L2O)是一种新兴方法,它利用机器学习开发优化方法,旨在减少人工重复手动工程的难度,使基于其业绩的优化方法的设计在一系列培训问题的基础上自动化;这种数据驱动程序产生了能够有效解决与培训问题相似问题的方法;与此形成鲜明对比的是,优化方法的典型和传统设计是理论驱动的,因此,它们可以在理论规定的各类问题上获得绩效保障;这一差异使得L2O适合反复解决特定数据分配方面的某种优化问题,而这种方法通常无法解决分配以外的问题。L2O的实用性取决于目标优化的类型、所选择的学习方法的结构以及培训程序。这一新模式激励了研究人员群体探索L2O并报告其研究结果。这篇文章将成为L2O用于持续优化的首次全面调查和基准。我们设置了分类,对现有的工作和研究方向进行了分类,对当前在分配之外的问题进行了分析,并查明了公开的挑战。我们还将许多现有的L2O软件组合的标准化方法作为基准,对目前O2O/O的标准化数据进行量化的标准化研究。