This paper introduces a natural language understanding (NLU) framework for argumentative dialogue systems in the information-seeking and opinion building domain. Our approach distinguishes multiple user intents and identifies system arguments the user refers to in his or her natural language utterances. Our model is applicable in an argumentative dialogue system that allows the user to inform him-/herself about and build his/her opinion towards a controversial topic. In order to evaluate the proposed approach, we collect user utterances for the interaction with the respective system and labeled with intent and reference argument in an extensive online study. The data collection includes multiple topics and two different user types (native speakers from the UK and non-native speakers from China). The evaluation indicates a clear advantage of the utilized techniques over baseline approaches, as well as a robustness of the proposed approach against new topics and different language proficiency as well as cultural background of the user.
翻译:本文介绍了信息搜索和见解建设领域辩论对话系统的自然语言理解框架(NLU),我们的方法区分了多重用户意图,并确定了用户在自然语言表述中提及的系统参数。我们的模式适用于一个辩论对话系统,使用户能够告知自己情况,并形成对争议性议题的看法。为了评价拟议方法,我们收集了与相关系统互动的用户意见,并在广泛的在线研究中标注了意图和参考参数。数据收集包括多个主题和两种不同的用户类型(英国的母语发言人和中国的非母语发言人)。评估表明,所使用的技术比基线方法有明显的优势,以及拟议方法相对于新专题和不同语言熟练程度以及用户的文化背景具有稳健性。