Lexical inference in context (LIiC) is the task of recognizing textual entailment between two very similar sentences, i.e., sentences that only differ in one expression. It can therefore be seen as a variant of the natural language inference task that is focused on lexical semantics. We formulate and evaluate the first approaches based on pretrained language models (LMs) for this task: (i) a few-shot NLI classifier, (ii) a relation induction approach based on handcrafted patterns expressing the semantics of lexical inference, and (iii) a variant of (ii) with patterns that were automatically extracted from a corpus. All our approaches outperform the previous state of the art, showing the potential of pretrained LMs for LIiC. In an extensive analysis, we investigate factors of success and failure of our three approaches.


翻译:上下文(LIIC)的法理推理是承认两个非常相似的句子(即只用一种表达方式表示的句子)之间的文字含义的任务,因此,可以把它视为以法律语义为重点的自然语言推理任务的变体,我们根据预先培训的语言模型制定和评价了这项任务的第一种方法:(一) 几发NLI分类器,(二) 以手制模式为基础的关系感应法,表达法理推理的语义,(三) 一种(二) 模式的变体,自动从一个材料中提取,我们的所有方法都与以往的艺术状态不同,显示为LIC预先培训的LMS的潜力。 我们通过广泛分析,调查了我们三种方法的成败因素。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
【SIGIR 2020】 基于协同注意力机制的知识增强推荐模型
专知会员服务
90+阅读 · 2020年7月23日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
110+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年5月29日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
7+阅读 · 2018年11月1日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员