The dichromatic number of a digraph is the minimum size of a partition of its vertices into acyclic induced subgraphs. Given a class of digraphs $\mathcal C$, a digraph $H$ is a hero in $\mc C$ if $H$-free digraphs of $\mathcal C$ have bounded dichromatic number. In a seminal paper, Berger at al. give a simple characterization of all heroes in tournaments. In this paper, we give a simple proof that heroes in quasi-transitive oriented graphs are the same as heroes in tournaments. We also prove that it is not the case in the class of oriented multipartite graphs, disproving a conjecture of Aboulker, Charbit and Naserasr. We also give a full characterisation of heroes in oriented complete multipartite graphs up to the status of a single tournament on $6$ vertices.
翻译:暂无翻译