Reinforcement learning (RL) has been applied to attack graphs for penetration testing, however, trained agents do not reflect reality because the attack graphs lack operational nuances typically captured within the intelligence preparation of the battlefield (IPB) that include notions of (cyber) terrain. In particular, current practice constructs attack graphs exclusively using the Common Vulnerability Scoring System (CVSS) and its components. We present methods for constructing attack graphs using notions from IPB on cyber terrain analysis of obstacles, avenues of approach, key terrain, observation and fields of fire, and cover and concealment. We demonstrate our methods on an example where firewalls are treated as obstacles and represented in (1) the reward space and (2) the state dynamics. We show that terrain analysis can be used to bring realism to attack graphs for RL.
翻译:强化学习(RL)已被应用于用于渗透测试的攻击图,但是,受过训练的代理人没有反映现实,因为攻击图缺乏作战图中通常在战场(IPB)的情报准备中所捕捉到的操作上的细微差别,其中包括(cyber)地形的概念,特别是目前的做法只使用共同脆弱性计分系统(CVSS)及其组成部分来构建攻击图,我们提出了使用IPB关于对障碍、途径、关键地形、观察和火场以及掩护和隐藏进行网络地形分析的概念来构建攻击图的方法。我们展示了我们的方法,例如将防火墙作为障碍对待,并在(1) 奖励空间和(2) 状态动态中体现。我们表明,地形分析可以用来为RL带来攻击图的现实主义。