Matrix multiplication is the bedrock in Deep Learning inference application. When it comes to hardware acceleration on edge computing devices, matrix multiplication often takes up a great majority of the time. To achieve better performance in edge computing, we introduce a low-power Multi-layer Perceptron (MLP) accelerator based on a pipelined matrix multiplication scheme and a nonuniform quantization methodology. The implementation is running on Field-programmable Gate Array (FPGA) devices and tested its performance on handwritten digit classification and Q-learning tasks. Results show that our method can achieve better performance with fewer power consumption.
翻译:矩阵乘法是深层学习推理应用的基石。 当涉及到边缘计算设备的硬件加速时, 矩阵乘法往往占用了大部分时间。 为了在边缘计算中取得更好的性能, 我们引入了一种基于编织矩阵乘法和非单向量化方法的低功率多层倍增加速器。 执行程序正在用现场可编程门阵列设备运行, 并在手写数字分类和 Q 学习任务上测试其性能。 结果显示, 我们的方法可以用更少的电耗来实现更好的性能。